digital maps for business
Language

Advanced route optimization

and transport management

Advanced optimization algorithms

Optymalizacja kosztów trasy o niewielki procent jest w stanie przełożyć się na realne, wielomilionowe oszczędności dla dużego przedsiębiorstwa, poprzez obniżenie kosztów eksploatacji floty.


Przede wszystkim optymalizacja tras

 

Głównym założeniem algorytmów VRP jest optymalizacja tras, a w związku z tym kosztów związanych z działalnością transportową. Algorytmy Emapy mogą jednak być skierowane na optymalizację innych celów lub zasobów. Przykładem niech będzie równomierne rozłożenie zleceń dla poszczególnych pojazdów (wykorzystanie całej floty lub tylko jej części). Założenia wprowadzane jako dane do algorytmów VRP to:

  • lista punków do odwiedzenia,
  • dane dotyczące liczby pojazdów (liczba zdefiniowana, ograniczona, nieograniczona),
  • parametry okien czasowych (dla każdego z odwiedzanych punktów),
  • problem pick-up delivery,
  • ładowność pojazdów,
  • maksymalny koszt trasy.

Każdy z parametrów może dodatkowo zawierać wyjątki lub dopuszczenie do przekroczenia zdefiniowanej reguły. Często ma to znaczenie dla takich parametrów jak definicja okien czasowych lub maksymalny koszt trasy.


Zapytaj o więcej szczegółów o optymalizacji tras



Wyrażam zgodę na:


Optimising route cost by even a small factor can translate into real multi million euro savings for a large company by lowering the service cost of a given car fleet or by intensification of vehicle use decreasing the total number of needed vehicles. 

 

Emapa breaks world records

 

The development of Emapa VRP (Vehicle Routing Problem) algorithms is a constant drive for perfection. Apart from acclaim granted by industry clients, the company is also proud of its success on the scientific level. During simulated environment tests Emapa team constituting of misters Sielski, Cybula and Rogalski (SCR) beat a number of world records in a comparative Gehring and Homberger test for 800 and 1000 pickup points – number of clients. The aim of the above mentioned test is to:

  • Minimise the number of vehicles,
  • Minimise the overall distance

 

It is worth mentioning that such good results are exceptionally rare due to the high level of efficiency presented in the ranking. During the cited trial Emapa employees focussed mainly on 800 customer instances.

The whole venture is carried out by Emapa company as part of a research project (number POIR.01.01.01.-00-0222/16) called “New methods of optimising VRP issues”, which is part of the national Smart Growth 2014-2020 operational program (Activity 1.1 – R&D projects for companies) with a value of more than 4 million PLN.

 

First of all: route optimization

 

Issues pertaining to fleet and transport cost reduction usually boil down to monitoring of fuel cost and car use policy. Companies introduce fuel limits and verify the driven distances via GPS enabled solutions. Some companies also try to profile their drivers’ driving styles forcing them to economise. When company cars cover many dozen kilometers daily, however, meaningful cost reductions can be achieved only by total optimisation of routes. This task is complicated due to many hindering factors:

  • Time windows of deliveries (limited time options when the driver can visit a location),
  • Diversified fleet (different types of vehicles used in terms of their loading capacity),
  • Many points of loading,
  • Infrastructural limits (traffic, accidents, etc.).

 

What do optimization algorithms mean in practice?

 

The above mentioned problems can be solved by utilisation of VRP (Vehicle Routing Problem) algorithms. These algorithms generate substantial savings by solving most logistic problems. Optimisation of routes can yield the following benefits:

  • Shortening the total length of combined routes.
  • Saving time and maintenance cost of a vehicle fleet.
  • Planning a rational order of customer point visits taking into consideration their geographical location and preferred pickup/drop-off times.
  • Planning optimal number of vehicles needed to service a set number of orders.
  • Optimising vehicle fleet in line with current business needs
  • Planning routes many days in advance including cyclical visits.

 

Learn more about VRP optimization on our blog.